z-logo
open-access-imgOpen Access
Human‐centric multimodal deep (HMD) traffic signal control
Author(s) -
Wang Leizhen,
Ma Zhenliang,
Dong Changyin,
Wang Hao
Publication year - 2023
Publication title -
iet intelligent transport systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 45
eISSN - 1751-9578
pISSN - 1751-956X
DOI - 10.1049/itr2.12300
Subject(s) - computer science , intersection (aeronautics) , real time computing , pedestrian , signal (programming language) , pedestrian crossing , reinforcement learning , queue , simulation , artificial intelligence , transport engineering , computer network , engineering , programming language
Reinforcement learning (RL)‐based models have been widely studied for traffic signal control with objectives, such as minimizing vehicle delay and queue length, maximizing vehicle throughput, and improving road safety, through tailored reward designs. Despite the advancements in RL‐based signal control models for car traffic, limited research focused on multimodal traffic (e.g. car, bus, pedestrian). The simplified environment of unimodal traffic restrains these models from applications in real‐world cases. In this paper, the authors propose an RL‐based human‐centric multimodal deep (HMD) traffic signal control method to coordinate multimodal traffic at an intersection, with the objective of minimizing the waiting time per capita for multiple traffic modes by taking consideration of the mode capacity to ensure social equity. The method is validated in the simulation of urban mobility (SUMO) simulation environment using real traffic data. The results show the superior performance of HMD over vehicle‐centric (VC) RL‐based methods and traditional signal control schemes. HMD reduces the waiting time per capita by up to 19.2% and 6.3% compared with the fixed timing and VC RL‐based methods. In addition, the experiment results show that the HMD method assigns a higher priority to public transport over low‐occupancy travel modes in passing through intersections compared with unimodal traffic signal control strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here