z-logo
open-access-imgOpen Access
Trident‐YOLO: Improving the precision and speed of mobile device object detection
Author(s) -
Wang Guanbo,
Ding, Hongwei,
Li Bo,
Nie Rencan,
Zhao Yifan
Publication year - 2022
Publication title -
iet image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 45
eISSN - 1751-9667
pISSN - 1751-9659
DOI - 10.1049/ipr2.12340
Subject(s) - trident , flops , computer science , gf(2) , object detection , pascal (unit) , feature (linguistics) , artificial intelligence , pattern recognition (psychology) , parallel computing , mathematics , linguistics , philosophy , archaeology , combinatorics , programming language , history , finite field
This paper introduce an efficient object detection network named Trident‐You Only Look Once (YOLO), which is designed for mobile devices with limited computing power. The new architecture is improved based on YOLO v4‐tiny. The authors redesign the network structure and propose a trident feature pyramid network (Trident‐FPN), which can improve the precision and recall of lightweight object detection. Specifically, Trident‐FPN increases the computational complexity by only a small amount of floating point operations per second (FLOPs) and obtains a multi‐scale feature map of the model, which significantly lightweight object detection performance. To enlarge the receptive field of the network with the fewest FLOPs, this paper redesign the receptive field block (RFB) and spatial pyramid pooling (SPP) layer and propose tinier cross‐stage partial RFBs and smaller cross‐stage partial SPPs. This paper present extensive experiments, and Trident‐YOLO shows strong performance compared to that of other popular models on the PASCAL VOC and MS COCO. On the MS COCO and PASCAL VOC 2007 test sets, the mean average precision (mAP) of Trident‐YOLO improved by 4.5% and 5.0%, respectively. Trident‐YOLO also reduce the network size by more than 54.4% compared to YOLO v4‐tiny. With a 23.7% FLOP reduction, the FPS is improved by 1.9 on an Nvidia Jetson Xavier NX.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here