z-logo
open-access-imgOpen Access
Tensor dimensionality reduction via mode product and HSIC
Author(s) -
Niu Guo,
Ma Zhengming
Publication year - 2021
Publication title -
iet image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 45
eISSN - 1751-9667
pISSN - 1751-9659
DOI - 10.1049/ipr2.12285
Subject(s) - dimensionality reduction , curse of dimensionality , tensor (intrinsic definition) , mathematics , tensor product , reproducing kernel hilbert space , computer science , artificial intelligence , hilbert space , pure mathematics
Tensor dimensionality reduction (TDR) is a hot research topic in machine learning, which learns data representations by preserving the original data structure while avoiding convert samples into vectors and solving the problem of the curse of dimensionality of tensor data. In the work, a novel TDR approach based on mode product and Hilbert–Schmidt Independence criterion (HSIC) is proposed. The contributions of authors' work is described as following: (1) HSIC measures the statistical correlation of two random variables. However, instead of measuring the statistical correlation of two random variables directly, HSIC first transforms the two random variables into two reproducing kernel Hilbert spaces (RKHSs), and then measures the statistical correlation of transformed random variables by using Hilbert–Schmidt operators between the two RKHSs. The exploitation of RKHS increases the flexibility and applicability of HSIC. Although HSIC is widely used in machine learning, the authors have not seen its application to dimensionality reduction (DR)(except for authors' previous work). (2) A novel HSIC‐based TDR approach is proposed, which first applies HSIC to capture statistical information of tensor data set for DR. The authors give the mathematical derivation of HSIC for tensor data and establish a framework of TDR based on HSIC, named HSIC‐TDR for short, which aims to improve the DR results of tensor by exploring and preserving the statistical information of original data set. (3) Furthermore, to solve the out‐of‐sample problem, the authors learn an explicit expression between the dimensionality‐reduced tensors and the higher‐dimensional tensors by introducing mode product to HSIC‐TDR. The experimental results between the proposed method and other state‐of‐the‐art algorithm on various datasets demonstrate the well performance of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here