
Dependence of bacterial growth rate on dynamic temperature changes
Author(s) -
Dey Abhishek,
Bokka Venkat,
Sen Shaunak
Publication year - 2020
Publication title -
iet systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 50
eISSN - 1751-8857
pISSN - 1751-8849
DOI - 10.1049/iet-syb.2018.5125
Subject(s) - growth rate , bacterial growth , biological system , exponential growth , growth model , logistic function , thermodynamics , mathematics , statistics , chemistry , statistical physics , econometrics , materials science , biology , physics , bacteria , mathematical analysis , genetics , geometry , mathematical economics
Temperature is an important determinant of bacterial growth. While the dependence of bacterial growth on different temperatures has been well studied for many bacterial species, prediction of bacterial growth rate for dynamic temperature changes is relatively unclear. Here, the authors address this issue using a combination of experimental measurements of the growth, at the resolution of 5 min, of Escherichia coli and mathematical models. They measure growth curves at different temperatures and estimate model parameters to predict bacterial growth profiles subject to dynamic temperature changes. They compared these predicted growth profiles for various step‐like temperature changes with experimental measurements using the coefficient of determination and mean square error and based on this comparison, ranked the different growth models, finding that the generalised logistic growth model gave the smallest error. They note that as the maximum specific growth increases the duration of this growth predominantly decreases. These results provide a basis to compute the dependence of the growth rate parameter in biomolecular circuits on dynamic temperatures and may be useful for designing biomolecular circuits that are robust to temperature.