
Prediction of drug synergy score using ensemble based differential evolution
Author(s) -
Singh Harpreet,
Rana Prashant Singh,
Singh Urvinder
Publication year - 2019
Publication title -
iet systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 50
eISSN - 1751-8857
pISSN - 1751-8849
DOI - 10.1049/iet-syb.2018.5023
Subject(s) - support vector machine , artificial intelligence , computer science , ensemble learning , machine learning , kernel (algebra) , regression , field (mathematics) , mean squared error , differential evolution , data mining , mathematics , statistics , combinatorics , pure mathematics
Prediction of drug synergy score is an ill‐posed problem. It plays an efficient role in the medical field for inhibiting specific cancer agents. An efficient regression‐based machine learning technique has an ability to minimise the drug synergy prediction errors. Therefore, in this study, an efficient machine learning technique for drug synergy prediction technique is designed by using ensemble based differential evolution (DE) for optimising the support vector machine (SVM). Because the tuning of the attributes of SVM kernel regulates the prediction precision. The ensemble based DE employs two trial vector generation techniques and two control attributes settings. The initial generation technique has the best solution and the other is without the best solution. The proposed and existing competitive machine learning techniques are applied to drug synergy data. The extensive analysis demonstrates that the proposed technique outperforms others in terms of accuracy, root mean square error and coefficient of correlation.