
Integer programming‐based method for observability of singleton attractors in Boolean networks
Author(s) -
Cheng Xiaoqing,
Qiu Yushan,
Hou Wenpin,
Ching WaiKi
Publication year - 2017
Publication title -
iet systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 50
eISSN - 1751-8857
pISSN - 1751-8849
DOI - 10.1049/iet-syb.2016.0022
Subject(s) - observability , attractor , integer programming , set (abstract data type) , computer science , integer (computer science) , singleton , mathematics , theoretical computer science , algorithm , pregnancy , mathematical analysis , biology , genetics , programming language
Boolean network (BN) is a popular mathematical model for revealing the behaviour of a genetic regulatory network. Furthermore, observability, an important network feature, plays a significant role in understanding the underlying network. Several studies have been done on analysis of observability of BNs and complex networks. However, the observability of attractor cycles, which can serve as biomarker detection, has not yet been addressed in the literature. This is an important, interesting and challenging problem that deserves a detailed study. In this study, a novel problem was first proposed on attractor observability in BNs. Identification of the minimum set of consecutive nodes can be used to discriminate different attractors. Furthermore, it can serve as a biomarker for different disease types (represented as different attractor cycles). Then a novel integer programming method was developed to identify the desired set of nodes. The proposed approach is demonstrated and verified by numerical examples. The computational results further illustrates that the proposed model is effective and efficient.