
Adaptive modelling of gene regulatory network using Bayesian information criterion‐guided sparse regression approach
Author(s) -
Shi Ming,
Shen Weiming,
Wang HongQiang,
Chong Yanwen
Publication year - 2016
Publication title -
iet systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.367
H-Index - 50
eISSN - 1751-8857
pISSN - 1751-8849
DOI - 10.1049/iet-syb.2016.0005
Subject(s) - key (lock) , chinese academy of sciences , china , state (computer science) , bayesian network , people's republic , computer science , artificial intelligence , geography , algorithm , computer security , archaeology
Inferring gene regulatory networks (GRNs) from microarray expression data are an important but challenging issue in systems biology. In this study, the authors propose a Bayesian information criterion (BIC)‐guided sparse regression approach for GRN reconstruction. This approach can adaptively model GRNs by optimising the l 1 ‐norm regularisation of sparse regression based on a modified version of BIC. The use of the regularisation strategy ensures the inferred GRNs to be as sparse as natural, while the modified BIC allows incorporating prior knowledge on expression regulation and thus avoids the overestimation of expression regulators as usual. Especially, the proposed method provides a clear interpretation of combinatorial regulations of gene expression by optimally extracting regulation coordination for a given target gene. Experimental results on both simulation data and real‐world microarray data demonstrate the competent performance of discovering regulatory relationships in GRN reconstruction.