
Pilot study: electrical impedance based tissue classification using support vector machine classifier
Author(s) -
Grewal Parvind Kaur,
Golnaraghi Farid
Publication year - 2014
Publication title -
iet science, measurement and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 49
eISSN - 1751-8830
pISSN - 1751-8822
DOI - 10.1049/iet-smt.2013.0087
Subject(s) - support vector machine , classifier (uml) , computer science , pattern recognition (psychology) , artificial intelligence , electrical impedance , engineering , electrical engineering
Tissue classification using computer aided diagnosis can help automated decision making to aid clinical diagnosis. Classification of breast tissue based on spectral features of impedance loci has frequently been done to classify malignant tissue with further requirement of more complex classification methodologies needed to improve the characterisation. In current study, tissue classification is done using in vivo electrical impedance data of 18 human subjects, from four quadrants of breast, palm, nail, arm, bicep and classified using algorithms involving machine learning methodologies, specifically support vector machines (SVMs) that are supervised learning models. They consist of learning algorithms based on the principal of structural risk minimisation. Two methodologies of SVM have been used in this study: with data binning and data pruning and without data binning and data pruning. Data binning and data pruning have improved the sensitivity of the SVM from 76.76 to 89.23%, but the specificity has decreased from 76.23 to 74.15%. This is a pilot study towards testing the reliability of the developed electrical impedance measuring system and developing a data mining‐based decision making system into an electrical impedance spectroscopy system, to help users (physicians) with tissue classification leading to reliable objective decision making.