z-logo
open-access-imgOpen Access
Analysis and tuning methodology of FAPI controllers for maximising the share of grid‐connected wind generations
Author(s) -
Rakhshani Elyas,
Perilla Arcadio,
Veerakumar Nidarshan,
Ahmad Zameer,
Rueda Torres Jose,
Meijden Mart,
Palensky Peter
Publication year - 2020
Publication title -
iet renewable power generation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.005
H-Index - 76
eISSN - 1752-1424
pISSN - 1752-1416
DOI - 10.1049/iet-rpg.2019.1445
Subject(s) - control theory (sociology) , sensitivity (control systems) , controller (irrigation) , wind power , frequency deviation , voltage droop , emulation , inertia , parametric statistics , testbed , power (physics) , engineering , automatic frequency control , computer science , electronic engineering , voltage , electrical engineering , mathematics , control (management) , artificial intelligence , voltage divider , biology , classical mechanics , agronomy , physics , aerospace engineering , economic growth , quantum mechanics , statistics , economics
In this study, a novel methodology is proposed for sensitivity‐based tuning and analysis of derivative‐based fast active power injection (FAPI) controllers in type‐4 wind turbine units integrated into a low‐inertia power system. The FAPI controller is attached to a power electronic interfaced generation (PEIG) represented by a generic model of wind turbines type 4. It consists of a combination of droop and derivative controllers, which is dependent on the measurement of the frequency. The tuning methodology performs parametric sensitivity to search for the most suitable set of parameters of the attached FAPI that minimises the maximum frequency deviation in the containment period. The FAPI is adjusted to safeguard system stability when increasing the share of PEIG. Since the input signal of the FAPI is the measured frequency, the impact of different values and parameter settings of the phase‐locked loop used for the FAPI controller is also investigated. Detailed validation with a full‐scaled wind power converter is also provided with a real‐time digital simulator testbed. Obtained simulation results using a three‐area test system, identify the maximum achievable degree of increase in the share of wind power when a proper combination of wind park locations considering their suggested settings for inertia emulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here