
Dynamic voltage restorer employing multilevel cascaded H‐bridge inverter
Author(s) -
Galeshi Soleiman,
ImanEini Hossein
Publication year - 2016
Publication title -
iet power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.637
H-Index - 77
eISSN - 1755-4543
pISSN - 1755-4535
DOI - 10.1049/iet-pel.2015.0335
Subject(s) - capacitor , voltage , transformer , inverter , compensation (psychology) , energy storage , computer science , matlab , control theory (sociology) , h bridge , electronic engineering , engineering , electrical engineering , control (management) , power (physics) , psychology , physics , quantum mechanics , artificial intelligence , psychoanalysis , operating system
This study presents design and analysis of a dynamic voltage restorer (DVR) which employs a cascaded multilevel inverter with capacitors as energy sources. The multilevel inverter enables the DVR to connect directly to the medium voltage networks, hence, eliminating the series injection transformer. Using zero energy compensation method, the DVR does not need active energy storage systems, such as batteries. Since the energy storage system only includes capacitors, the control system will face some additional challenges compared with other DVR systems. Controlling the voltage of capacitors around a reference voltage and keeping the balance between them, in standby and compensation period, is one of them. A control scheme is presented in this study that overcomes the challenges. Additionally, a fast three‐phase estimation method is employed to minimise the delay of DVR and to mitigate the voltage sags as fast as possible. Performance of the control scheme and estimation method is assessed using several simulations in PSCAD/EMTDC and MATLAB/SIMULINK environments, and experiments on a 7‐level cascaded H‐bridge converter.