
Wing‐kinematics measurement and flight modelling of the bamboo weevil C. buqueti
Author(s) -
Li Xin,
Guo Ce
Publication year - 2020
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 38
eISSN - 1751-875X
pISSN - 1751-8741
DOI - 10.1049/iet-nbt.2019.0261
Subject(s) - wing , flapping , kinematics , thrust , wing twist , aerospace engineering , wing loading , lift (data mining) , engineering , physics , structural engineering , computer science , aerodynamics , angle of attack , classical mechanics , data mining
Insects are one of the most agile flyers in nature, and studying the kinematics of their wings can provide important data for the design of insect‐like wing‐flapping micro aerial vehicles. This study integrates high‐speed photogrammetry and three‐dimensional (3D) force measurement system to explore the kinematics of Cyrtotrachelus buqueti during the wing‐flapping flight. The tracking point at the wing tip of the hind wing was recorded using high‐speed videography. The lift‐thrust force characteristic of wing‐flapping motion was obtained by the 3D force sensor. Quantitative measurements of wing kinematics show that the wing‐flapping pattern of the hind wing of C. buqueti was revealed as a double figure‐eight trajectory. The kinematic modelling of the wing‐flapping pattern was then established by converting the flapping motion into rotational motion about the pivoting wing base in the reference coordinate system. Moreover, the lift force generated by C. buqueti during the wing‐flapping flight is sufficient to support its body weight without the need to use thrust force to compensate for the lack of lift force.