
Multi‐threshold and multi‐input DNA logic design style for profiling the microRNA biomarkers of real cancers
Author(s) -
Sanjabi Mercedeh,
Jahanian Ali
Publication year - 2019
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
ISSN - 1751-875X
DOI - 10.1049/iet-nbt.2018.5275
Subject(s) - microrna , computer science , scalability , logic gate , computational biology , biology , algorithm , gene , genetics , database
Early detection of cancer is very critical because it can reduce the treatment risk and cost. MicroRNAs (miRNAs) have been introduced in recent years as an efficient class of biomarkers for cancer early detection. Now, real‐time polymerase chain reaction has been used to profile the miRNA expression, which is costly, time consuming and low accuracy. Most recently, DNA logic gates are used to detect the miRNA expression level that is more accurate and faster than previous methods. The DNA‐based logic gates face with serious challenges such as the large complexity and low scalability. In this study, the authors proposed a methodology to design multi‐threshold and multi‐input DNA‐based logic gates in response to specific miRNA inputs in live mammalian cells. The proposed design style can simultaneously recognise multiple miRNAs with different rising and falling thresholds. The design style has been evaluated on the lung cancer biomarkers and the experimental results show the efficiency of the proposed method in terms of accuracy, efficiency and speed.