
Size effects of magnetic beads in circulating tumour cells magnetic capture based on streptavidin–biotin complexation
Author(s) -
Li Fulai,
Xu Hengyi,
Sun Pingfeng,
Hu Zhibin,
Aguilar Zoraida P.
Publication year - 2019
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 38
eISSN - 1751-875X
pISSN - 1751-8741
DOI - 10.1049/iet-nbt.2018.5104
Subject(s) - streptavidin , circulating tumor cell , immunomagnetic separation , biotin , magnetic separation , chemistry , metastasis , peripheral blood , materials science , cancer , chromatography , medicine , biochemistry , metallurgy
Circulating tumour cells (CTCs) draw significant attention as a promising biomarker for cancer prognosis, status monitoring, and metastasis diagnosis. However, the concentration of CTCs in peripheral blood is usually extremely low, thereby requiring enrichment followed by isolation of CTCs prior to detection. An immunomagnetic separation is a promising tool for CTCs enrichment. In this study, a cost‐effective magnetic separation method, based on streptavidin–biotin complexation, was developed and the effects of magnetic beads’ size in CTCs capture were compared. Magnetic nanobeads which were 25 nm in diameter lead to highest capture efficiency (82.2%) compared with 150 nm magnetic beads and 1 µm microbeads. Based on the streptavidin–biotin system, 25 nm magnetic nanobeads could capture model CTCs over 80% efficiency even at concentrations as low as ∼25 cells/mL that may represent the actual level of CTCs in peripheral blood of cancer patients. Furthermore, the isolated cells remained robust and healthy showing insignificant changes in morphology and behaviour when cultured for 24 h immediately after capture and isolation. The magnetic nanobeads based on streptavidin–biotin complexation showed promise for the easy and efficient capture and isolation of healthy CTCs for further diagnosis and analysis.