z-logo
open-access-imgOpen Access
Development of nanoformulation of picroliv isolated from Picrorrhiza kurroa
Author(s) -
Guliani Anika,
Kumari Avnesh,
Kumar Dharmesh,
Yadav Sudesh Kumar
Publication year - 2016
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 38
eISSN - 1751-875X
pISSN - 1751-8741
DOI - 10.1049/iet-nbt.2015.0032
Subject(s) - chemistry , bioavailability , zeta potential , cytotoxicity , pharmacology , nanotechnology , biochemistry , nanoparticle , in vitro , materials science , medicine
Picroliv, a mixture of picroside I and kutkoside isolated from rhizome of Picrorrhiza kurroa has been reported for many pharmaceutical properties such as hepatoprotective, anticholestatic, antioxidant and immune‐modulating activity. However, picroliv possessed lesser efficacy due to its poor aqueous solubility and lesser bioavailability. To find solution, picroliv was loaded into biodegradable poly lactic acid nanoparticles (PLA NPs) using solvent evaporation method. The picroliv‐loaded PLA NPs were characterised by UV–vis spectroscopy, atomic force microscopy, transmission electron microscopy, Fourier transform infrared and Zeta sizer. The size of picroliv‐loaded PLA NPs was 182 ± 20 nm. Zeta potential of picroliv‐loaded PLA NPs was −23.5 mV, indicated their good stability. In vitro picroliv release from picroliv‐loaded PLA NPs showed an initial burst release followed by slow and sustained release. The efficacy of picroliv‐loaded PLA NPs was assessed against KB cell lines. Blank PLA NPs showed no cytotoxicity on KB cells. The picroliv‐loaded PLA NPs showed more cytotoxic activity on KB cells as compared to the pure drug. Hence, the developed picroliv nanoformulation would find potential application in pharma‐sector.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here