
Influence of antibiotic adsorption on biocidal activities of silver nanoparticles
Author(s) -
Khurana Chandni,
Vala Anjana K.,
Andhariya Nidhi,
Pandey O.P.,
Chudasama Bhupendra
Publication year - 2016
Publication title -
iet nanobiotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 38
eISSN - 1751-875X
pISSN - 1751-8741
DOI - 10.1049/iet-nbt.2015.0005
Subject(s) - chemistry , tetracycline , microbiology and biotechnology , antibiotics , biology
Excessive use of antibiotics has posed two major challenges in public healthcare. One of them is associated with the development of multi‐drug resistance while the other one is linked to side effects. In the present investigation, the authors report an innovative approach to tackle the challenges of multi‐drug resistance and acute toxicity of antibiotics by using antibiotics adsorbed metal nanoparticles. Monodisperse silver nanoparticles (SNPs) have been synthesised by two‐step process. In the first step, SNPs were prepared by chemical reduction of AgNO 3 with oleylamine and in the second step, oleylamine capped SNPs were phase‐transferred into an aqueous medium by ligand exchange. Antibiotics – tetracycline and kanamycin were further adsorbed on the surface of SNPs. Antibacterial activities of SNPs and antibiotic adsorbed SNPs have been investigated on gram‐positive ( Staphylococcus aureus , Bacillus megaterium , Bacillus subtilis ), and gram‐negative ( Proteus vulgaris , Shigella sonnei , Pseudomonas fluorescens ) bacterial strains. Synergistic effect of SNPs on antibacterial activities of tetracycline and kanamycin has been observed. Biocidal activity of tetracycline is improved by 0–346% when adsorbed on SNPs; while for kanamycin, the improvement is 110–289%. This synergistic effect of SNPs on biocidal activities of antibiotics may be helpful in reducing their effective dosages.