z-logo
open-access-imgOpen Access
Compact broadband frequency selective microstrip antenna and its application to indoor positioning systems for wireless networks
Author(s) -
Bakr Mustafa S.,
Großwindhager Bernhard,
Rath Michael,
Kulmer Josef,
Hunter Ian C.,
AbdAlhameed Raed A.,
Witrisal Klaus,
Boano Carlo Alberto,
Römer Kay,
Bösch Wolfgang
Publication year - 2019
Publication title -
iet microwaves, antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.555
H-Index - 69
eISSN - 1751-8733
pISSN - 1751-8725
DOI - 10.1049/iet-map.2018.5241
Subject(s) - patch antenna , microstrip antenna , electronic engineering , broadband , antenna (radio) , acoustics , computer science , telecommunications , engineering , physics
This study presents a low‐profile broadband microstrip patch antenna with filtering response. The proposed antenna consists of a rectangular patch and four parasitic gap‐coupled elements, two L‐ and two rectangular‐shaped patches. A broadband quasi‐elliptic boresight gain response is obtained without using any extra filtering circuits. The input impedance of each radiating element, i.e., driven patch and parasitic elements, is matched to its radiating quality factor and the couplings between patches are optimised for broadband impedance bandwidth with filtering response. Prototype hardware is designed and fabricated on Kappa 438 substrate with a relative permittivity of 4.4 and thickness of 3.2 mm. The antenna exhibits a total size of 25 × 23 × 3.2 mm 3 with relative impedance bandwidth (voltage standing wave ratio<2) of 60% ranging from 4.4 to 7.8 GHz. The experimental results demonstrate good performance with nearly flat gain and good filtering response. The proposed filtering antenna exhibits low pulse distortion in time domain which makes it a good candidate for location‐aware Internet‐of‐things applications employing the IEEE 802.15.4 ultra‐wideband standard. Switchable sector base‐station antenna system is studied to demonstrate the capability of this design to enhance the localisation and communication performance of the wireless network.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here