
Multiband low‐cost fractal antenna based on parasitic split ring resonators
Author(s) -
Sharma Vipul,
Lakwar Neeraj,
Kumar Nitin,
Garg Tanuj
Publication year - 2018
Publication title -
iet microwaves, antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.555
H-Index - 69
eISSN - 1751-8733
pISSN - 1751-8725
DOI - 10.1049/iet-map.2017.0623
Subject(s) - patch antenna , microstrip antenna , fractal antenna , impedance matching , antenna factor , bandwidth (computing) , split ring resonator , materials science , acoustics , antenna (radio) , optics , electronic engineering , resonator , physics , electrical impedance , optoelectronics , computer science , telecommunications , electrical engineering , engineering
This study presents the design of a low‐cost fractal antenna loaded with parasitic edge‐coupled (EC) split ring resonators (SRR). Parasitic EC SRR elements result in improved impedance matching leading to improved bandwidth. The basic resonant structure is a circular patch antenna designed at 3.2 GHz on low‐cost FR4 substrate with relative permittivity 4.4, and 1.6 mm thickness. A single iteration of circular patch and slots is used to make it fractal and in order to achieve multiband performance, the antenna is inset fed by a 50 Ω microstrip line. A prototype of the proposed antenna is fabricated and tested for results, a comparison between fractal antenna with and without SRRs is made and the results confirm that a better impedance matching is achieved in the later case, also a 3% increase in bandwidth is achieved at 8.5 GHz. A good agreement between simulated and measured results is obtained, an estimated gain of 13.3 dB is provided by the proposed antenna. The overall dimensions of the antenna are 45 mm × 45 mm and it may be used for wireless applications at 3, 5, 6.8, 7.5 and 8.5 GHz with an average bandwidth of 200 MHz.