z-logo
open-access-imgOpen Access
Alternative surface integral equation‐based characteristic mode analysis of dielectric resonator antennas
Author(s) -
Chen Yikai
Publication year - 2016
Publication title -
iet microwaves, antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.555
H-Index - 69
eISSN - 1751-8733
pISSN - 1751-8725
DOI - 10.1049/iet-map.2015.0304
Subject(s) - eigenvalues and eigenvectors , resonator , dielectric resonator antenna , poynting's theorem , dielectric resonator , dielectric , poynting vector , mathematics , mathematical analysis , scattering , physics , optics , quantum mechanics , magnetic field
Dielectric resonator antennas are widely used in wireless communication systems. A theory of characteristic modes (CMs) for modal analysis of dielectric resonators is highly demanded. Although a few earlier studies had proposed CM theory for modelling scattering from dielectric bodies, the physical characteristics of these CMs and their eigenvalues are not as clear as that of those for conducting bodies. This study revisits the CM theory for dielectric resonators. Following the Poynting's theorem and the PMCHWT (Poggio, Miller, Chang, Harrington, Wu, and Tsai) equation, two generalised eigenvalue equations are formulated. The resultant eigenvalues possess clear physical meanings that are the same as those of perfectly electrically conducting problems. In addition, other possible CM formulations based on the PMCHWT equation are also discussed. Mathematical proofs are given in the Appendix to show how to formulate CM theory to physically describe the fundamental resonant modes of dielectric resonators. Numerical results are given to show the proposed CM formulations are effective in solving resonant frequencies and modal fields for dielectric resonators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here