
2‐dimensional human‐like driver model for autonomous vehicles in mixed traffic
Author(s) -
Sharath Mysore N.,
Velaga Nagendra R.,
Quddus Mohammed A.
Publication year - 2020
Publication title -
iet intelligent transport systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 45
eISSN - 1751-9578
pISSN - 1751-956X
DOI - 10.1049/iet-its.2020.0297
Subject(s) - offset (computer science) , relative velocity , advanced driver assistance systems , computer science , control theory (sociology) , simulation , engineering , artificial intelligence , control (management) , physics , quantum mechanics , programming language
Classical artificial potential approach of motion planning is extended for emulating human driving behaviour in two dimensions. Different stimulus parameters including type of ego‐vehicle, type of obstacles, relative velocity, relative acceleration, and lane offset are used. All the surrounding vehicles are considered to influence drivers' decisions. No emphasis is laid on vehicle control; instead, an ego vehicle is assumed to reach the desired state. The study is on human‐like driving behaviour modelling. The developed motion planning algorithm formulates repulsive and attractive potentials in a data‐driven way in contrast to the classical arbitrary formulation. Interaction between the stimulus parameters is explicitly considered by using multivariate cumulative distribution functions. Comparison of two‐dimensional (lateral and longitudinal) performance indicators with a baseline model and generative adversarial networks indicate the effectiveness and suitability of the developed motion planning algorithm in the mixed traffic environment.