z-logo
open-access-imgOpen Access
SAR multi‐target interactive motion recognition based on convolutional neural networks
Author(s) -
Huan RuoHong,
Ge LuoQi,
Yang Peng,
Xie ChaoJie,
Chi KaiKai,
Mao KeJi,
Pan Yun
Publication year - 2020
Publication title -
iet image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 45
eISSN - 1751-9667
pISSN - 1751-9659
DOI - 10.1049/iet-ipr.2019.0861
Subject(s) - artificial intelligence , computer science , convolutional neural network , pattern recognition (psychology) , thresholding , computer vision , feature extraction , feature (linguistics) , motion (physics) , wavelet , image (mathematics) , philosophy , linguistics
Synthetic aperture radar (SAR) multi‐target interactive motion recognition classifies the type of interactive motion and generates descriptions of the interactive motions at the semantic level by considering the relevance of multi‐target motions. A method for SAR multi‐target interactive motion recognition is proposed, which includes moving target detection, target type recognition, interactive motion feature extraction, and multi‐target interactive motion type recognition. Wavelet thresholding denoising combined with a convolutional neural network (CNN) is proposed for target type recognition. The method performs wavelet thresholding denoising on SAR target images and then uses an eight‐layer CNN named EilNet to achieve target recognition. After target type recognition, a multi‐target interactive motion type recognition method is proposed. A motion feature matrix is constructed for recognition and a four‐layer CNN named FolNet is designed to perform interactive motion type recognition. A motion simulation dataset based on the MSTAR dataset is built, which includes four kinds of interactive motions by two moving targets. The experimental results show that the recognition performance of the authors’ Wavelet + EilNet method for target type recognition and FolNet for multi‐target interactive motion type recognition are both better than other methods. Thus, the proposed method is an effective method for SAR multi‐target interactive motion recognition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here