z-logo
open-access-imgOpen Access
Image denoising using common vector approach
Author(s) -
Özkan Kemal,
Seke Erol
Publication year - 2015
Publication title -
iet image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 45
eISSN - 1751-9667
pISSN - 1751-9659
DOI - 10.1049/iet-ipr.2014.0979
Subject(s) - pattern recognition (psychology) , pixel , artificial intelligence , block (permutation group theory) , mathematics , noise reduction , image (mathematics) , feature vector , class (philosophy) , position (finance) , computer science , support vector machine , combinatorics , economics , finance
Common vector approach (CVA) is an increasingly popular classification method in recognition problems where probability of having the dimensionality of the problem higher than the number of data items is not zero. In CVA, common component of the members of classes is separated from the discriminating difference parts and used to determine whether a given vector (a block of data) belongs to the class in question, or to find out the class it belongs to. In this study, overlapping image blocks near the current pixel to be denoised are used as input data and a class is constructed per pixel position. Denoised image block is then constructed with the sum of common vector of the class and difference vector of the centre block denoised by linear minimum mean square error estimation technique. Since the classes are formed using similar blocks, the edges are preserved while denoising the image.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here