z-logo
open-access-imgOpen Access
Novel multifocus image fusion and reconstruction framework based on compressed sensing
Author(s) -
Yang ZhenZhen,
Yang Zhen
Publication year - 2013
Publication title -
iet image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.401
H-Index - 45
eISSN - 1751-9667
pISSN - 1751-9659
DOI - 10.1049/iet-ipr.2012.0710
Subject(s) - image fusion , computer vision , fusion , artificial intelligence , computer science , iterative reconstruction , compressed sensing , image (mathematics) , sensor fusion , philosophy , linguistics
In this study, an efficient multifocus image fusion and reconstruction framework based on compressed sensing in the wavelet domain are proposed. The new framework is composed of three phases. Firstly, the source images are represented with their sparse coefficients using the discrete wavelet transform (DWT). Secondly, the measurements are obtained by the random Gaussian matrix from their sparse coefficients, and are then fused by the proposed adaptive local energy metrics (ALEM) fusion scheme. Finally, a fast continuous linearised augmented Lagrangian method (FCLALM) is proposed to reconstruct the sparse coefficients from the fused measurement, which will be converted by the inverse DWT (IDWT) to the fused image. Our experimental results show that the proposed ALEM image fusion scheme can achieve a higher fusion quality than some existing fusion schemes. In addition, the proposed FCLALM reconstruction algorithm has a higher peak‐signal‐to‐noise ratio and a faster convergence rate as compared with some existing reconstruction methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here