z-logo
open-access-imgOpen Access
New emerging voltage source converter for high‐voltage application: hybrid multilevel converter with dc side H‐bridge chain links
Author(s) -
Adam Grain Philip,
Williams Barry W.
Publication year - 2014
Publication title -
iet generation, transmission and distribution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.92
H-Index - 110
eISSN - 1751-8695
pISSN - 1751-8687
DOI - 10.1049/iet-gtd.2013.0076
Subject(s) - converters , modular design , transmission system , capacitor , voltage , hvdc converter station , electrical engineering , electronic engineering , computer science , high voltage , engineering , topology (electrical circuits) , transmission (telecommunications) , operating system
Hybrid multilevel converters (HMCs) are more attractive than the traditional multilevel converters, such as modular converters, because they offer all the features needed in a modern voltage source converter‐based dc transmission system with reduced size and weight, at a competitive level of semiconductor losses. Therefore this study investigates the viability of a HMC that uses dc side H‐bridge chain links, for high‐voltage dc and flexible ac transmission systems. In addition, its operating principle, modulation and capacitor voltage balancing, and control are investigated. This study focuses on response of this HMC to ac and dc network faults, with special attention paid to device issues that may arise under extreme network faults. Therefore the HMC with dc side chain links is simulated as one station of point‐to‐point dc transmission system that operates in an inversion mode, with all the necessary control systems incorporated. The major results and findings of subjecting this version of the hybrid converter to ac and dc networks faults are presented and discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here