Research Library

open-access-imgOpen AccessMitigation of cogging torque in transverse‐flux permanent‐magnet machines with flux concentrators by step skewing of stator pole
Taravat Sajad,
Kiyoumarsi Arash,
Bracikowski Nicolas
Publication year2020
Publication title
iet electric power applications
Resource typeJournals
PublisherThe Institution of Engineering and Technology
The objective of this article is to study how the stator step skewing method can lead to the reduction of the cogging torque of a transverse‐flux permanent‐magnet (TFPM) machine with flux concentrators. Three structures are analysed and compared in terms of their influence of the skewed displacement on the cogging torque using the three‐dimensional finite element method (3D‐FEM). Thereafter, to validate the FEM results, cogging torque is calculated by applying a Schwarz–Christoffel (SC) conformal mapping. To apply this transformation, the 3D TFPM generator structure with axially magnetised permanent magnets (PMs) is converted into a 2D structure with radially magnetised PMs and the cogging torque of the machine is predicted using both the analytical method and 3D‐FEM. The accuracy of the approach is demonstrated by the adequate agreement between the results obtained through this SC mapping and those of the 3D‐FEM. In addition, two 100 W prototyped TFPM machines are designed, simulated, manufactured and tested to validate the effects of the step‐skewed stator yoke on the predicted cogging torque and back‐EMF.
Subject(s)artificial intelligence , cogging torque , computer science , control (management) , control system , control theory (sociology) , direct torque control , electrical engineering , engineering , finite element method , flux linkage , fly by wire , induction motor , magnet , mechanical engineering , physics , stator , structural engineering , thermodynamics , torque , voltage , yoke (aeronautics)
SCImago Journal Rank0.815

Seeing content that should not be on Zendy? Contact us.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here