z-logo
open-access-imgOpen Access
Plant leaf classification using GIST texture features
Author(s) -
Mostajer Kheirkhah Fateme,
Asghari Habibollah
Publication year - 2019
Publication title -
iet computer vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 37
eISSN - 1751-9640
pISSN - 1751-9632
DOI - 10.1049/iet-cvi.2018.5028
Subject(s) - pattern recognition (psychology) , artificial intelligence , principal component analysis , computer science , support vector machine , feature extraction , classifier (uml) , artificial neural network
The leaves of plants have rich information in recognition of plants. In general, agriculture experts accomplish information extraction from the leaves. Since the leaves contain useful features for recognising various types of plants, so these features can be extracted and applied by automatic image recognition algorithms to classify plant species. In this study, the authors investigate a novel approach for recognition of plant species using GIST texture features. Then, the principal and suitable features are selected by principal component analysis (PCA) algorithm. In the classification step, three different approaches such as Patternnet neural network, support vector machine, and K‐nearest neighbour (KNN) algorithms were applied to the extracted features. For evaluation of the authors’ approach, they applied their proposed algorithm on three famous datasets. In comparison to some widely used features, the results show that their approach outperforms the other methods in the case of the time and the accuracy. The best results were achieved by applying PCA algorithm to GIST feature vector and using the Cosine KNN classifier.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here