
Text detection and recognition in natural scene with edge analysis
Author(s) -
Yu Chong,
Song Yonghong,
Meng Quan,
Zhang Yuanlin,
Liu Yang
Publication year - 2015
Publication title -
iet computer vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 37
eISSN - 1751-9640
pISSN - 1751-9632
DOI - 10.1049/iet-cvi.2013.0307
Subject(s) - artificial intelligence , computer science , pattern recognition (psychology) , histogram , enhanced data rates for gsm evolution , edge detection , classifier (uml) , segmentation , image segmentation , boundary (topology) , computer vision , image (mathematics) , image processing , mathematics , mathematical analysis
Text plays an important role in daily life because of its rich information, thus automatic text detection in natural scenes has many attractive applications. However, detecting and recognising such text is always a challenging problem. In this study, the authors propose a method which extends the widely‐used stroke width transform by two steps of edge analysis, namely candidate edge recombination and edge classification. A new method that recognises text through candidate edge recombination and candidate edge recognition is also proposed. In the step of candidate edge recombination, they use the idea of over‐segmentation and region merging. To separate text edge from background, the edge of the input image is first divided into small segments. Then, neighbour edge segments are merged, if they have similar stroke width and colour. Through this step, each character is described by one candidate boundary. In the step of boundary classification, candidate boundaries are aggregated into text chains, followed by chain classification using character‐based and chain‐based features. To recognise text, the grey image is extracted based on the location of each candidate edge after the step of candidate edge recombination. Then, histogram of gradient features and a classifier are used to recognise each character. To evaluate the effectiveness of their method, the algorithm is run on the ICDAR competition dataset and Street View Text database. The experimental results show that the proposed method provides promising performance in comparison with the existing methods.