
Cyber–physical attacks on power distribution systems
Author(s) -
Ayad Abdelrahman,
Farag Hany,
Youssef Amr,
ElSaadany Ehab
Publication year - 2020
Publication title -
iet cyber‐physical systems: theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.308
H-Index - 7
ISSN - 2398-3396
DOI - 10.1049/iet-cps.2019.0032
Subject(s) - cyber physical system , computer security , computer science , power (physics) , operating system , physics , quantum mechanics
This study investigates the impacts of stealthy false data injection (FDI) attacks that corrupt the state estimation operation of power distribution systems (PDS). In particular, the authors analyse FDI attacks that target the integrity of distribution systems optimal power flow (DSOPF) in order to maximise the system operator losses. The branch current state estimation method is implemented to accurately model the PDS, and convex relaxations are applied to the DSOPF model. The effects of the FDI attacks are analysed on the IEEE 34‐bus unbalanced radial distribution system, with distributed energy resources (DERs) along the feeder. A 24 h DSPOF is performed, and the results depict the changes in the voltage profile and the additional power injection from the DERs, which consequently lead to the increase of the DSOPF cost.