
Efficient beam selection and resource allocation scheme for WiFi and 5G coexistence at unlicensed millimetre‐wave bands
Author(s) -
Li Pengru,
Liu Danpu
Publication year - 2020
Publication title -
iet communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 62
eISSN - 1751-8636
pISSN - 1751-8628
DOI - 10.1049/iet-com.2019.0746
Subject(s) - millimetre wave , scheme (mathematics) , computer science , selection (genetic algorithm) , resource allocation , millimeter , computer network , resource (disambiguation) , telecommunications , physics , optoelectronics , mathematics , optics , artificial intelligence , mathematical analysis
To alleviate the spectrum scarcity, the unlicensed 60 GHz band has raised increasing concerns due to its continuous large bandwidth. Considering IEEE 802.11ad/ay has already been deployed in this millimetre‐wave band, the coexistence issues with new radio‐based access to unlicensed spectrum should be weighed when deploying fifth generation (5G) network. Fortunately, the directional transmission on beams is able to reduce interference significantly, so beam selection can be combined with power control. To maximise spectrum efficiency (SE) of the 5G network while ensuring a friendly coexistence, the authors formulate an optimisation problem by jointly considering beam selection and resource allocation. More specifically, they design a spectrum planning mechanism to reduce the interference between 5G and WiFi, and then a block coordinate descent method is used to determine the user association, beam selection and power control for 5G users, while limiting the interferences to WiFi devices. Simulation results verify the effectiveness of the proposed algorithm in terms of complexity, convergence and SE.