z-logo
open-access-imgOpen Access
Performance analysis of zero‐forcing‐based multiple‐input multiple‐output two‐way relaying in overlay device‐to‐device communications
Author(s) -
Singh Gurjar Devendra,
Upadhyay Prabhat Kumar
Publication year - 2016
Publication title -
iet communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 62
eISSN - 1751-8636
pISSN - 1751-8628
DOI - 10.1049/iet-com.2015.0394
Subject(s) - rayleigh fading , computer science , cellular network , base station , overlay , relay , communications system , stochastic geometry , computer network , outage probability , fading , electronic engineering , power (physics) , mathematics , channel (broadcasting) , statistics , engineering , physics , quantum mechanics , programming language
In this study, the authors conduct the performance evaluation and resource allocation for two‐way multiple‐input multiple‐output‐based device‐to‐device (D2D) communications overlaying a cellular network. The considered system model comprises of a base station, a mobile user, and a pair of D2D users, where each of them is equipped with multiple antennas and employs transmit/receive zero forcing. Based on overlaying approach, both D2D and cellular communications take place bidirectionally by employing analogue network coding with a best selected D2D user as two‐way relay for the cellular links. The authors analyse the outage performance of cellular and D2D systems in a Rayleigh fading environment. They also deduce asymptotic outage behaviour of cellular system and highlight the achievable diversity order. In addition, they derive the expressions of ergodic sum rate for both the systems. Above all, they provide a selection algorithm for the best relaying D2D user and describe feasible range of power splitting factor to maximise the data rate of cellular system for a given data rate of D2D system. Numerical and simulation results validate the authors’ theoretical findings and illustrate the performance gains of the considered scheme under various antenna configurations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here