
Disturbance observer aided optimised fractional‐order three‐degree‐of‐freedom tilt‐integral‐derivative controller for load frequency control of power systems
Author(s) -
Guha Dipayan,
Roy Provas Kumar,
Banerjee Subrata
Publication year - 2021
Publication title -
iet generation, transmission and distribution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.92
H-Index - 110
eISSN - 1751-8695
pISSN - 1751-8687
DOI - 10.1049/gtd2.12054
Subject(s) - control theory (sociology) , controller (irrigation) , fractional calculus , electric power system , observer (physics) , mathematics , stability (learning theory) , power (physics) , computer science , control (management) , physics , quantum mechanics , artificial intelligence , agronomy , biology , machine learning
This work demonstrates a maiden application of a fractional‐order based three‐degree‐of‐freedom tilt‐integral‐derivative controller for escalating the load frequency control performance of power system having wind power generator integrated. The disturbance observer is housed with the proposed fractional‐order‐three‐degree‐of‐freedom‐tilt‐integral‐derivative controller to efficiently estimate the wind velocity's uncertain profile and subsequently enrich the control law. The mastery of the proposed control algorithm has been tested on multi‐area interconnected power systems by performing an extensive comparative study with other prevalent techniques reported in the state‐of‐art. Harris' Hawks optimisation is applied to explore the proposed controllers' optimum gains, exercising an integral error‐based criterion. Time response measurements of the studied test systems in the wake of load fluctuation and intermittent output of wind power generator explicitly establish the efficacy of the proposed Harris' Hawks optimisation tuned disturbance observer‐based fractional‐order‐three‐degree‐of‐freedom‐tilt‐integral‐derivative controller over its other counterparts concerning damping of system oscillations. Furthermore, the developed control system's robust stability is affirmed using Kharitonov's stability theorem, considering ±25% variation in system parameters.