z-logo
open-access-imgOpen Access
Matrix modelling and optimisation calculation method for large‐scale integrated We‐Energy
Author(s) -
Zhang Ning,
Yang Lingxiao,
Sun Qiuye,
Li Yushuai
Publication year - 2022
Publication title -
iet energy systems integration
Language(s) - English
Resource type - Journals
ISSN - 2516-8401
DOI - 10.1049/esi2.12069
Subject(s) - computer science , renewable energy , mathematical optimization , coupling (piping) , scheduling (production processes) , flexibility (engineering) , matrix (chemical analysis) , energy (signal processing) , computational complexity theory , energy storage , algorithm , power (physics) , engineering , mathematics , materials science , mechanical engineering , physics , quantum mechanics , composite material , statistics , electrical engineering
Abstract We‐Energy (WE), as an important energy unit with full duplex and multi‐energy carriers in the integrated energy system, uses the coupling matrix to connect the network‐side and demand‐side energy. However, the coupling matrix of WE is very hard to be formulated directly due to the complicated internal structure and the flexibility of operation mode. This paper proposes a multi‐step method for the modelling of WE. According to the method, the conversion process in the WE can be separated into several steps and the WE model can be built by the coupling matrix in each step. Then, the WE model is extended by considering the renewable energy, location of storage and different types of demand response. Because of the non‐linearity caused by the dispatch factors, the computational complexity increases greatly for solving the optimal scheduling issue of the WE. In order to reduce the computational burden, the variable substitution is added in the proposed modelling method. The results of simulation cases are presented to demonstrate the performance of the proposed modelling and calculation method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here