
A self‐biased and all‐in‐one voltage and current reference
Author(s) -
Wang Yuanfei,
Luo Ping,
Yang Bingzhong,
Tang Tianyuan,
Zhang Bo
Publication year - 2021
Publication title -
electronics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 146
eISSN - 1350-911X
pISSN - 0013-5194
DOI - 10.1049/ell2.12037
Subject(s) - voltage reference , temperature coefficient , resistor , electrical engineering , voltage , bipolar junction transistor , bandgap voltage reference , materials science , current (fluid) , line regulation , cmos , power (physics) , physics , optoelectronics , transistor , dropout voltage , engineering , quantum mechanics
This Letter presents a high‐performance self‐biased and all‐in‐one voltage and current reference without BJT and V–I converter exploiting the zero‐temperature‐coefficient point of the N‐type MOSFET. With the help of the low‐temperature‐coefficient resistors and the self‐biased two‐stage OTA structure, the all‐in‐one reference can achieve the average temperature coefficients of 6.6 and 34 ppm/°C of voltage and current reference from −40 to 125 °C, respectively. Meanwhile, the line sensitivities are 0.08%/V and 0.23%/V of voltage and current reference. And the power supply rejection ratio of the voltage reference is −93 dB@100 Hz with the power consumption of 12.6 μW@tt corner and VDD = 2.5 V. The reference circuit is realized in a standard 180 nm CMOS process with the area of 0.0621 mm × mm.