Open Access
Quaternion softmax classifier
Author(s) -
Zeng Rui,
Wu Jiasong,
Shao Zhuhong,
Senhadji Lotfi,
Shu Huazhong
Publication year - 2014
Publication title -
electronics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 146
ISSN - 1350-911X
DOI - 10.1049/el.2014.2526
Subject(s) - softmax function , quaternion , artificial intelligence , classifier (uml) , pattern recognition (psychology) , computer science , feature extraction , rgb color model , pixel , computer vision , mathematics , artificial neural network , geometry
For the feature extraction of red–blue–green (RGB) colour images, researchers usually deal with R, G and B channels separately to obtain three feature vectors, and then combine them together to obtain a long real feature vector. This approach does not exploit the relationships between the three channels of the colour images. Recently, attention has been paid to quaternion features, which take the relationships between channels into consideration and seem to be more suitable for representing colour images. However, there are only a few quaternion classifiers for dealing with quaternion features. To meet this requirement, a new quaternion classifier, namely, the quaternion softmax classifier is proposed, which is an extended version of the conventional softmax classifier generally defined in the complex (or real) domain. The proposed quaternion softmax classifier is applied to two of the most common quaternion features, that is, the quaternion principal components analysis feature and the colour image pixel feature. The experimental results show that the proposed method performs better than the quaternion back propagation neural network in terms of accuracy and convergence rate.