z-logo
open-access-imgOpen Access
Highly accurate 3D wireless indoor positioning system using white LED lights
Author(s) -
Nadeem U.,
Hassan N.U.,
Pasha M.A.,
Yuen C.
Publication year - 2014
Publication title -
electronics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 146
ISSN - 1350-911X
DOI - 10.1049/el.2014.0353
Subject(s) - ceiling (cloud) , computer science , wireless , phase difference , positioning system , real time computing , simulation , acoustics , engineering , telecommunications , bandwidth (computing) , physics , structural engineering , node (physics)
A wireless indoor positioning system using white LED lights is proposed. The time difference of arrival technique is employed and the phase differences between the received signals are determined to develop a positioning algorithm which can estimate the receiver location with a mean localisation error as low as 1 mm in a room of dimensions 5 × 5 × 3 m. Through simulations, it is identified that the optimum receiver height where localisation error gets minimised is between 2.5 and 3 m from the ceiling which corresponds well with the typical dimensions of a room.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom