Bias‐compensated normalised LMS algorithm with noisy input
Author(s) -
Kang B.,
Yoo J.,
Park P.
Publication year - 2013
Publication title -
electronics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.375
H-Index - 146
eISSN - 1350-911X
pISSN - 0013-5194
DOI - 10.1049/el.2013.0246
Subject(s) - computer science , algorithm , control theory (sociology) , mathematics , artificial intelligence , control (management)
A new bias‐compensated normalised least mean square (NLMS) algorithm for parameter estimation with a noisy input is proposed. The algorithm is obtained from an approximated cost function based on the statistical properties of the input noise and involves a condition checking constraint to decide whether the weight coefficient vector must be updated. Simulation results show that the proposed algorithm is more robust and accurate than the conventional method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom