z-logo
open-access-imgOpen Access
A reliable and energy efficient dual prediction data reduction approach for WSNs based on Kalman filter
Author(s) -
Wang Haibin,
Yemeni Zaid,
Ismael Waleed M.,
Hawbani Ammar,
Alsamhi Saeed H.
Publication year - 2021
Publication title -
iet communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 62
eISSN - 1751-8636
pISSN - 1751-8628
DOI - 10.1049/cmu2.12262
Subject(s) - wireless sensor network , computer science , key distribution in wireless sensor networks , sensor node , energy consumption , real time computing , kalman filter , data transmission , efficient energy use , computer network , wireless , wireless network , engineering , telecommunications , artificial intelligence , electrical engineering
Wireless sensor networks (WSNs) are critically resource‐constrained due to wireless sensor nodes' tiny memory, low processing units, power limitations, and narrow communication bandwidth. The data reduction technique is one of the most widely used techniques to reduce transmitted data over the wireless sensor networks and to minimize the sensor nodes' energy consumption, particularly, the entire network in general. This paper proposes a reliable dual prediction data reduction approach for WSNs. This approach performs data reduction through two phases: the data reduction phase (DRP) and data prediction phase (DPP). The DRP is mainly to decrease the number of transmissions between the sensor node and the sink node, thereby minimizing energy consumption. It also detects faulty data and discards them at the sensor node. The discarded faulty data at the sensor nodes are replaced by estimated values at the sink node to maintain data reliability. DPP runs at the sink node or base station, which works in synchronization with the sensor nodes. This phase is responsible for predicting the non‐transmitted data based on the Kalman filter. The simulation results demonstrate that the proposed approach is efficient and effective in data reduction, data reliability, and energy consumption.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here