
Porn Streamer Recognition in Live Video Based on Multimodal Knowledge Distillation
Author(s) -
Liyuan WANG,
Jing ZHANG,
Jiacheng YAO,
Li ZHUO
Publication year - 2021
Publication title -
chinese journal of electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.267
H-Index - 25
eISSN - 2075-5597
pISSN - 1022-4653
DOI - 10.1049/cje.2021.07.027
Subject(s) - computer science , artificial intelligence , deep learning , distillation , computation , computer vision , algorithm , chemistry , organic chemistry
Although deep learning has reached a higher accuracy for video content analysis, it is not satisfied with practical application demands of porn streamer recognition in live video because of multiple parameters, complex structures of deep network model. In order to improve the recognition efficiency of porn streamer in live video, a deep network model compression method based on multimodal knowledge distillation is proposed. First, the teacher model is trained with visual‐speech deep network to obtain the corresponding porn video prediction score. Second, a lightweight student model constructed with MobileNetV2 and Xception transfers the knowledge from the teacher model by using multimodal knowledge distillation strategy. Finally, porn streamer in live video is recognized by combining the lightweight student model of visualspeech network with the bullet screen text recognition network. Experimental results demonstrate that the proposed method can effectively drop the computation cost and improve the recognition speed under the proper accuracy.