
Predicting Future Rumours
Author(s) -
Qin Yumeng,
Dominik Wurzer,
Tang Cunchen
Publication year - 2018
Publication title -
chinese journal of electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.267
H-Index - 25
eISSN - 2075-5597
pISSN - 1022-4653
DOI - 10.1049/cje.2018.03.008
Subject(s) - misinformation , social media , harm , computer science , novelty , task (project management) , data science , fake news , internet privacy , artificial intelligence , computer security , world wide web , psychology , social psychology , management , economics
Recent uproar of fake news and misinformation on social media platforms has sparked the interest in the scientific community to automatically detect and refute them. The most popular research task to counteract misinformation, Rumour detection, requires repeated signals to reach adequate detection accurate. Consequently, rumour detection recognizes rumours only when they have started spreading and causing harm. We introduce a new task called “rumour prediction” that assesses the possibility of a document arriving from a social media stream becoming a rumour in the future. Note that rumour prediction differentiates itself from rumour detection through instant decision making. This allows refuting misinformation before it spreads and causes harm. Our approach to rumour prediction harnesses content based features in combination with novelty based features and pseudo feedback. Our experiments show that we are able to accurately predict, whether a document will become a rumour in the future. Additionally, we show how rumour prediction can significantly improve the accuracy of state‐of‐the‐art Rumour detection systems.