
A Novel Adaptive Wavelet Thresholding with Identical Correlation Shrinkage Function for ECG Noise Removal
Author(s) -
HE Hong,
TAN Yonghong
Publication year - 2018
Publication title -
chinese journal of electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.267
H-Index - 25
eISSN - 2075-5597
pISSN - 1022-4653
DOI - 10.1049/cje.2018.02.006
Subject(s) - thresholding , wavelet , pattern recognition (psychology) , mathematics , signal (programming language) , wavelet packet decomposition , artificial intelligence , noise (video) , wavelet transform , computer science , algorithm , shrinkage , statistics , image (mathematics) , programming language
On the basis of wavelet theory, a novel Adaptive wavelet thresholding method (AWT) is proposed for the ECG signal enhancement. The best base wavelet for ECG signal filtering can be automatically obtained through the cross correlation coefficient and the energy to entropy ratio. The variable universal threshold (VarUniversal) is applied to different decomposition level so as to suppress diverse noise. To achieve a smooth cut‐off transition, an identical correlation shrinkage function (IcoShrinkage) is also adopted in the AWT according to its correlation coefficients with the hard thresholding and the soft thresholding. The performance of AWT is compared with four threshold approaches and six shrinkage functions, respectively, on the basis of 150 practical ECG signals of 30 subjects. The filtering results reveal that the AWT can adaptively choose an optimal base wavelet for a specific ECG signal. With the VarUniversal threshold and IcoShrinkage, the AWT obtains the better filtering results than the other compared methods.