
A New Cooperative Distributed MPC Method Based on Reduction and Classification
Author(s) -
Wu Lan,
Wang Lei
Publication year - 2017
Publication title -
chinese journal of electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.267
H-Index - 25
eISSN - 2075-5597
pISSN - 1022-4653
DOI - 10.1049/cje.2017.03.007
Subject(s) - reduction (mathematics) , computer science , artificial intelligence , mathematics , geometry
To decrease the overlarge calculation induced by the centralized processing, a new cooperative distributed Model predictive control (MPC) method is proposed for large‐scale systems with coupled dynamics. Reduction and classification are investigated by defining the influence degree to reduce the whole system and then to classify the reduced system into several subsystem groups. These groups are mutually decoupled, while there is relativity between these subsystems comprised in the same group. Centralized/cooperative and distributed MPC algorithms for each group are implemented to ensure the feasibility and the stability of the whole system. Meanwhile, for practical applications, the finite times interactive control strategy between different groups is adopted to compensate information loss brought by the reduced subsystem and realize the global cooperative distributed MPC. This algorithm significantly decreases the computational load, has better control performance. Simulations are given to illustrate the effectiveness of these developed algorithms.