Premium
ARRESTED DEVELOPMENT OF GIANT KELP ( MACROCYSTIS PYRIFERA , PHAEOPHYCEAE) EMBRYONIC SPOROPHYTES: A MECHANISM FOR DELAYED RECRUITMENT IN PERENNIAL KELPS? 1
Author(s) -
Kinlan Brian P.,
Graham Michael H.,
Sala Enric,
Dayton Paul K.
Publication year - 2003
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1046/j.1529-8817.2003.02087.x
Subject(s) - kelp , sporophyte , biology , macrocystis pyrifera , perennial plant , frond , botany , algae , ecology , gametophyte , population , pollen , demography , sociology
Delayed recruitment of microscopic stages in response to cyclical cues is critical to the population dynamics of many annual and seasonally reproducing perennial seaweeds. Microscopic stages may play a similar role in continuously reproducing perennials in which adult sporophytes are subject to episodic mortality, if they can respond directly to the unpredictable onset and relaxation of unfavorable conditions. We experimentally evaluated the potential for temporary reduction in limiting resources (light, nutrients) to directly delay recruitment of giant kelp ( Macrocystis pyrifera (L.) C.A. Agardh) gametophytes and embryonic sporophytes. Laboratory cultures were subjected to limiting conditions of light and nutrients for 1 month and then exposed to nonlimiting conditions for 10 days. Gametophytes in all treatments failed to recruit to sporophytes after 2 weeks, suggesting they are not a source of delayed recruitment in giant kelp. Sporophytes in light‐limited treatments, however, survived and grew significantly slower than non–light‐limited controls. When stimulated with light, light‐limited sporophytes grew from 2 to>10 times faster than unstimulated controls depending on nutrient availability. These results suggest that limiting resources can delay recruitment of embryonic giant kelp sporophytes for at least 1 month. Flexible timing of recruitment from embryonic sporophytes may enhance persistence of continuously reproducing perennial species when mac‐ roscopic adults are subject to episodic large‐scale removals.