z-logo
Premium
Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes.
Author(s) -
Boska MD,
Welch KM,
Barker PB,
Nelson JA,
Schultz L
Publication year - 2003
Publication title -
headache: the journal of head and face pain
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.14
H-Index - 119
eISSN - 1526-4610
pISSN - 0017-8748
DOI - 10.1046/j.1526-4610.2003.03085_7.x
Subject(s) - migraine , aura , migraine with aura , phosphocreatine , cortical spreading depression , medicine , endocrinology , neurology , energy metabolism , psychiatry
Neurology. 2002;58:1227‐1233. BACKGROUND: Previous single voxel (31)P MRS pilot studies of migraine patients have suggested that disordered energy metabolism or Mg(2+) deficiencies may be responsible for hyperexcitability of neuronal tissue in migraine patients. These studies were extended to include multiple brain regions and larger numbers of patients by multislice (31)P MR spectroscopic imaging. METHODS: Migraine with aura (MWA), migraine without aura (MwoA), and hemiplegic migraine patients were studied between attacks by (31)P MRS imaging using a 3‐T scanner. RESULTS: Results were compared with those in healthy control subjects without headache. In MwoA, consistent increases in phosphodiester concentration [PDE] were measured in most brain regions, with a trend toward increase in [Mg(2+)] in posterior brain. In MWA, phosphocreatine concentration ([PCr]) was decreased to a minor degree in anterior brain regions and a trend toward decreased [Mg(2+)] was observed in posterior slice 1, but no consistent changes were found in phosphomonoester concentration [PME], [PDE], inorganic phosphate concentration ([Pi]), or pH. In hemiplegic migraine patients, [PCr] had a tendency to be lower, and [Mg(2+)] was significantly lower than in the posterior brain regions of control subjects. Trend analysis showed a significant decrease of brain [Mg(2+)] and [PDE] in posterior brain regions with increasing severity of neurologic symptoms. CONCLUSIONS: Overall, the results support no substantial or consistent abnormalities of energy metabolism, but it is hypothesized that disturbances in magnesium ion homeostasis may contribute to brain cortex hyperexcitability and the pathogenesis of migraine syndromes associated with neurologic symptoms. In contrast, migraine patients without a neurologic aura may exhibit compensatory changes in [Mg(2+)] and membrane phospholipids that counteract cortical excitability. Comment: If the theory of hyperexcitability of migraine brain is correct, basic scientists will need to find clear markers for the neuronal abnormalities that underlie this excitability. Using their techniques, these researchers could not find such markers. SJT

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here