Premium
Strain rates from snowball garnet
Author(s) -
Biermeier C.,
Stüwe K.
Publication year - 2003
Publication title -
journal of metamorphic geology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.639
H-Index - 114
eISSN - 1525-1314
pISSN - 0263-4929
DOI - 10.1046/j.1525-1314.2003.00441.x
Subject(s) - geology , schist , metamorphic rock , strain rate , inclusion (mineral) , mineralogy , rotation (mathematics) , deformation (meteorology) , crystal (programming language) , growth rate , mica , geometry , geochemistry , materials science , composite material , paleontology , oceanography , mathematics , computer science , programming language
Spiral inclusion trails in garnet porphyroblasts are likely to have formed due to simultaneous growth and rotation of the crystals, during syn‐metamorphic deformation. Thus, they contain information on the strain rate of the rock. Strain rates may be interpreted from such inclusion trails if two functions are known: (1) The relationship between rotation rate and shear strain rate; (2) the growth rate of the crystal. We have investigated details of both functions using a garnetiferous mica schist from the eastern European Alps as an example. The rotation rate of garnet porphyroblasts was determined using finite element modelling of the geometrical arrangement of the crystals in the rock. The growth rate of the porphyroblasts was determined by using the major and trace element distributions in garnet crystals, thermodynamic pseudosections and information on the grain size distribution. For the largest porphyroblast size fraction (size L =12 mm) we constrain a growth interval between 540 and 590 °C during the prograde evolution of the rock. Assuming a reasonable heating rate and using the angular geometry of the spiral inclusion trails we are able to suggest that the mean strain rate during crystal growth was of the order of =6.6 × 10 −14 s −1 . These estimates are consistent with independent estimates for the strain rates during the evolution of this part of the Alpine orogen.