z-logo
Premium
Variabilidad en el ADN Mitocondrial de Lobos Italianos y de Europa Oriental: Detección de las Consecuencias de un Tamaño Poblacional Pequeño y de la Hibridización
Author(s) -
Randi Ettore,
Lucchini Vittorio,
Christensen Mads Fjeldsø,
Mucci Nadia,
Funk Stephan M.,
Dolf Gaudenz,
Loeschcke Volker
Publication year - 2000
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1046/j.1523-1739.2000.98280.x
Subject(s) - introgression , canis , mitochondrial dna , haplotype , population , mtdna control region , biology , zoology , geography , demography , ecology , genetics , genotype , gene , sociology
The Italian wolf ( Canis lupus ) population has declined continuously over the last few centuries and become isolated as a result of the extermination of other populations in central Europe and the Alps during the nineteenth century. In the 1970s, approximately 100 wolves survived in 10 isolated areas in the central and southern Italian Apennines. Loss of genetic variability, as suggested by preliminary studies of mitochondrial DNA (mtDNA) sequences, hybridization with feral dogs, and the illegal release of captive, non‐native wolves are considered potential threats to the viability of the Italian wolf population. We sequenced 546 base pairs of the mtDNA control region in a comprehensive set of Italian wolves and compared them to those of dogs and other wolf populations from Europe and the Near East. Our data confirm the absence of mtDNA variability in Italian wolves: all 101 individuals sampled across their distribution in Italy had the same, unique haplotype, whereas seven haplotypes were found in only 26 wolves from an outbred population in Bulgaria. Most haplotypes were specific either to wolves or dogs, but some east European wolves shared haplotypes with dogs, indicative of hybridization. In contrast, neither hybridization with dogs nor introgression of non‐native wolves was detected in the Italian population. These findings exclude the introgression of dog genes via matings between male wolves and female dogs, the most likely direction of hybridization. The observed mtDNA monomorphism is the possible outcome of random drift in the declining and isolated Italian wolf population, which probably existed at low effective population size during the last 100–150 years. Low effective population size and the continued loss of genetic variability might be a major threat to the long‐term viability of Italian wolves. A controlled demographic increase, leading to recolonization of the historical wolf range in Italy, should be enforced.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here