Premium
Genetic Structure and Migration in Native and Reintroduced Rocky Mountain Wolf Populations
Author(s) -
Forbes Stephen H.,
Boyd Diane K.
Publication year - 1997
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1046/j.1523-1739.1997.96296.x
Subject(s) - biological dispersal , biology , gene flow , population , ecology , genetic structure , canis , geography , genetic variation , demography , sociology
Gray wolf (Canis lupus) recovery in the Rocky Mountains of the U.S. is proceeding by both natural recolonization and managed reintroduction. We used DNA microsatellite analysis of wolves transplanted from Canada to two reintroduction sites in the U.S. to study population structure in native and reintroduced wolf populations. Gene flow due to migration between regions in Canada is substantial, and all three recovery populations in the U.S. had high genetic variation. The reintroduced founders were moderately genetically divergent from the naturally colonizing U.S. population. These findings corroborate that the reintroduction more than meets generally accepted genetic guidelines. Maintaining this variation, however, will depend on ample reproduction in the first few generations. In the long term genetic variation will best be retained if migration occurs among the recolonizing and the two transplanted populations. Evidence from field observation and genetic studies shows extensive dispersal by wolves, and we conclude that exchange among these groups due to natural dispersal is likely if public tolerance and legal protection are adequate outside lands designated for wolf recovery.