Premium
Modelo predictivo sobre los efectos de la disminución en el ingreso de detritos transportados por el aire a través de la deforestación ribereña sobre el metabolismo lacustre
Author(s) -
France R.L.,
Peters R.H.
Publication year - 1995
Publication title -
conservation biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.2
H-Index - 222
eISSN - 1523-1739
pISSN - 0888-8892
DOI - 10.1046/j.1523-1739.1995.09061578.x
Subject(s) - environmental science , riparian zone , plant litter , deforestation (computer science) , hydrology (agriculture) , drainage basin , plankton , standing crop , litter , biomass (ecology) , ecosystem , ecology , geology , geography , biology , geotechnical engineering , cartography , habitat , computer science , programming language
The importance of airborne allochthonous litter to the carbon and nutrient budgets of lakes has been seldom studied. We complied data on the input of terrestrial litter to develop a simple and speculative model to predict the potential consequences of riparian deforestation on one aspect of lake metabolism, specifically the balance between phytoplankton production and plankton respiration. During the autumn of 1992, 56 litter traps were deployed around the littoral zones of four oligotrophic lakes in a densely forested region of northwestern Ontario, Canada. The airborne litter input was estimated to be 32 g dry weight per meter of forested shoreline per year. Allochthonous litter input per unit offshore distance was related to the size of riparian trees, their proximity to the shoreline, and the elevation of their canopy. Combining our data with those from other studies suggests that terrestrial litter can contribute up to 15% of the total carbon supply to oligotrophic lakes and up to 10% of the total phosphorus supply to lakes with a large surface area relative to that of their drainage basin. These results were incorporated into a simple model that predicts that removal of shoreline trees could increase the ratio of plankton production to respiration in oligotrophic lakes situated within small drainage basins. Such lakes may therefore shift from allotrophy to increasing autotropy (energy self‐sustenance) following riparian deforestation.