Premium
Symposium 8: Regulation of Oligodendrocyte Development. Guidance of oligodendrocyte precursor migration in the developing spinal cord
Author(s) -
Miller R. H.,
Wang RZ.,
Tsai HH.
Publication year - 2002
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.81.s1.51_1.x
Subject(s) - oligodendrocyte , biology , neuroscience , spinal cord , microbiology and biotechnology , neuroepithelial cell , lineage (genetic) , cxc chemokine receptors , sonic hedgehog , anatomy , central nervous system , myelin , chemokine , immunology , chemokine receptor , neural stem cell , signal transduction , stem cell , immune system , genetics , gene
Oligodendrocyte precursors arise in restricted regions of the developing neuroepithelium due to local signals that include sonic hedgehog. In the spinal cord the founder cells of the oligodendrocyte lineage develop in a specific domain of the ventral ventricular zone. These cells or their progeny subsequently migrate long distances to populate the entire spinal cord and myelinate axons in the peripheral presumptive white matter. The majority of migration in the oligodendrocyte lineage is accomplished by immature precursors, which then stop, proliferate and differentiate in the appropriate location. Several distinct mechanisms appear to regulate this migration. The initial dispersal of cells from the ventral ventricular zone is guided by chemorepellent cues including netrin‐1 present in the ventral ventricular domain. Migratory precursors are arrested in particular locations within the developing spinal cord as the result of the localized expression of the chemokine, CXCL1 by astrocytes. This chemokine, signalling through the CXCR2 receptor combines with PDGF to inhibit cell migration and enhance cell proliferation thereby facilitating the local expansion of the oligodendrocyte lineage and myelination of all relevant axons.