z-logo
Premium
Poster sessions AP11: Neurotransmitters, Transporter and Enzymes. Structure and activity of recombinant human glutamate carboxypeptidase II
Author(s) -
Barinka C.,
Rinnova M.,
Sacha P.,
Mlcochova P.,
Rojas C.,
Majer P.,
Slusher B.,
Konvalinka J.
Publication year - 2002
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.81.s1.11_1.x
Subject(s) - glutamate carboxypeptidase ii , biochemistry , glutamate receptor , dipeptidase , carboxypeptidase , enzyme , extracellular , recombinant dna , biology , glycosylation , chemistry , microbiology and biotechnology , receptor , gene , prostate , genetics , cancer
Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a membrane peptidase expressed in a number of tissues such as kidney, prostate and brain. The brain form of GCPII (also known as N‐acetylated‐α‐linked‐acidic dipeptidase, NAALADase) cleaves N‐acetyl‐aspartyl glutamate to yield free glutamate. Animal model experiments show that inhibition of GCPII prevents neuronal cell death during experimental ischaemia. GCPII thus represents an important target for the treatment of neuronal damage caused by excess glutamate. We report the mapping of the entire coding region of GCPII and identification of the region sufficient and necessary for the production of active recombinant protein. Extracellular portion of human glutamate carboxypeptidase II (amino acids 44–750) was expressed in Drosophila Schneider's cells and purified to homogeneity. A novel assay for hydrolytic activity of GCPII, based on fluorimetric detection of released alpha‐amino groups was established, and used for enzymological characterization of GCPII. The potential of this assay for high‐throughput inhibitor testing was evaluated and pH dependence for the enzymatic activity have been analysed. Using a complete set of protected dipeptides, substrate specificity of recombinant GCPII was elucidated. Ac‐Glu‐Met, Ac‐Asp‐Met and surprisingly Ac‐Ala‐Met were identified as novel substrates for GCPII. The glycosylation has been found indispensable for the activity of the enzyme. A series of point mutants of the enzyme has been expressed and purified and the glycosylation sites critical for the proteolytic activity have been identified.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here