Premium
Time‐dependent changes in gene expression profiles of midbrain dopamine neurons following haloperidol administration
Author(s) -
Fasulo Wendy H.,
Hemby Scott E.
Publication year - 2003
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.2003.01986.x
Subject(s) - haloperidol , ventral tegmental area , substantia nigra , tyrosine hydroxylase , dopamine , biology , striatum , gene expression , neuroscience , antipsychotic , gene , pharmacology , schizophrenia (object oriented programming) , dopaminergic , medicine , genetics , psychiatry
Antipsychotic drugs require a treatment regimen of several weeks before clinical efficacy is achieved in patient populations. While the biochemical mechanisms underlying the delayed temporal profile remain unclear, molecular adaptations in specific neuroanatomical loci are likely involved. Haloperidol‐induced changes in gene expression in various brain regions have been observed; however, alterations in distinct neuronal populations have remained elusive. The present study examined changes in gene expression profiles of ventral tegmental area (VTA) and substantia nigra (SN) tyrosine hydroxylase immunopositive neurons following 1, 10 or 21 days of haloperidol administration (0.5 mg/kg/day). Macroarrays were used to study the expression of receptors, signaling proteins, transcription factors and pre‐ and post‐synaptic proteins. Data were analyzed using conventional statistical procedures as well as self‐organizing maps (SOM) to elucidate conserved patterns of expression changes. Results show statistically significant haloperidol‐induced and time‐dependent alterations in 17 genes in the VTA and 25 genes in the SN, including glutamate and GABA receptor subunits, signaling proteins and transcription factors. SOMs revealed distinct patterns of gene expression changes in response to haloperidol. Understanding how gene expression is altered over a clinically relevant time course of haloperidol administration may provide insight into the development of antipsychotic efficacy as well as the underlying pathology of schizophrenia.