Premium
Molecular changes in fetal Down syndrome brain
Author(s) -
Engidawork Ephrem,
Lubec Gert
Publication year - 2003
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1046/j.1471-4159.2003.01614.x
Subject(s) - down syndrome , trisomy , neurodegeneration , phenotype , biology , fetus , neuroscience , chromosome 21 , chromosome , genetics , medicine , pathology , disease , pregnancy , gene
Trisomy of human chromosome 21 is a major cause of mental retardation and other phenotypic abnormalities collectively known as Down syndrome. Down syndrome is associated with developmental failure followed by processes of neurodegeneration that are known to supervene later in life. Despite a widespread interest in Down syndrome, the cause of developmental failure is unclear. The brain of a child with Down syndrome develops differently from that of a normal one, although characteristic morphological differences have not been noted in prenatal life. On the other hand, a review of the existing literature indicates that there are a series of biochemical alterations occurring in fetal Down syndrome brain that could serve as substrate for morphological changes. We propose that these biochemical alterations represent and/or precede morphological changes. This review attempts to dissect these molecular changes and to explain how they may lead to mental retardation.